
 
Module 10: Digital Camera Design and Hardware-Software Partitioning - 
Crafting Specialized Embedded Systems 
Course Overview: 

Welcome to Week 10, where we delve into the intricate world of specialized embedded 
systems by focusing on the example of a Digital Camera. This module is not just about 
cameras; it's a practical, real-world case study to illustrate the profound challenges and 
strategic decisions involved in designing complex embedded systems. A digital camera, with 
its demanding real-time image processing, high data rates, and user interaction, serves as 
an excellent archetype for understanding the critical process of Hardware-Software 
Partitioning. We will dissect the architectural components of a digital camera, explore the 
sophisticated image signal processing pipeline, and, most importantly, meticulously analyze 
how functionalities are strategically allocated between dedicated hardware and flexible 
software to achieve optimal performance, cost-efficiency, and power consumption. This 
module will equip you with the essential mindset for making informed design trade-offs in 
any high-performance embedded application. 

Learning Objectives: 

Upon successful completion of this comprehensive module, you will be proficient in: 

● Identifying and describing the core architectural components of a modern digital 
camera system, understanding their individual roles and interconnections. 

● Explaining the fundamental principles and characteristics of major image sensor 
technologies, specifically CMOS and CCD, detailing their respective advantages and 
disadvantages for embedded vision systems. 

● Tracing and elaborating upon the key stages within a typical Image Signal 
Processing (ISP) pipeline, recognizing the purpose, computational demands, and 
typical implementation approaches for each stage. 

● Articulating and justifying the fundamental principles and overarching importance 
of Hardware-Software Co-design in the development of high-performance and 
resource-constrained embedded systems, emphasizing the benefits over sequential 
design. 

● Analyzing and applying various strategies for Hardware-Software Partitioning, 
including understanding concepts like allocation, mapping, and granularity, and their 
implications for system design, considering various influencing factors. 

● Utilizing the digital camera as a detailed case study to illustrate practical 
decisions and trade-offs made during the hardware-software partitioning process for 
complex, data-intensive embedded systems, providing specific examples for 
common camera functions. 

● Evaluating and making informed decisions regarding critical design trade-offs 
among performance, cost, power consumption, and flexibility in the context of 
embedded system architecture, understanding their interdependencies and how they 
guide partitioning. 

 



Module 10.1: The Architecture and Core Components of a Digital Camera 
System 
This introductory section establishes a foundational understanding of the digital camera as a 
complex embedded system, from light capture to image storage and display. 

● 10.1.1 Overview of Digital Camera System Architecture: A Functional Decomposition 
A digital camera is an intricate embedded system that seamlessly integrates optical, 
electronic, and computational elements to achieve its primary function: capturing and 
processing visual information. Its architecture can be conceptualized as a series of 
interconnected subsystems, each with specialized roles. 

○ Optical System: This is the initial interface with the physical world. It includes 
the Lens, responsible for focusing light rays onto the image sensor; the 
Aperture, which controls the amount of light entering the camera and 
influences depth of field; and the Shutter, which regulates the duration for 
which the sensor is exposed to light. Precise control over these elements is 
crucial for image quality. 

○ Image Acquisition Unit: This core unit transforms light into digital data. It 
comprises the Image Sensor (CMOS or CCD, discussed below), which 
converts photons into an analog electrical charge, and the Analog-to-Digital 
Converter (ADC), which quantizes this analog charge into discrete digital 
values. The speed and precision of this conversion directly impact image 
fidelity. 

○ Image Processing Unit (ISP): Often the most computationally intensive part, 
the ISP is responsible for transforming the raw, unprocessed digital data from 
the sensor into a high-quality, visually appealing image. This involves a 
complex pipeline of algorithms (detailed in 10.1.3), which correct 
imperfections, enhance colors, reduce noise, and sharpen details. Modern 
ISPs are often highly specialized hardware accelerators. 

○ Memory Subsystem: An embedded camera system requires a multi-tiered 
memory hierarchy: 

1. Volatile Memory (RAM, e.g., DDR SDRAM): Used for high-speed 
temporary storage of large image buffers (raw data, processed 
frames), working data for the ISP, and execution space for software. 
Its size and speed are critical for real-time performance. 

2. Non-Volatile Memory (Flash, EEPROM): Used for storing firmware, 
configuration settings, calibration data, and sometimes small internal 
image caches. 

3. Cache Memory: Integrated within the processor and ISP to speed up 
access to frequently used data and instructions. 

○ Control and User Interface Unit: This is the brain that orchestrates the 
entire camera operation. It typically involves a Microcontroller or 
Microprocessor running the main control software. This unit manages: 

1. Camera modes (photo, video, playback, settings). 
2. Interaction with user inputs (buttons, dials, touch screen interface 

logic). 
3. Output to the LCD Display (preview, menu, captured images). 



4. Coordination between other subsystems (e.g., initiating image 
capture, commanding the ISP, managing storage). 

○ Storage Unit: The captured and processed images need to be saved. This 
often involves: 

1. Removable Storage Media: Commonly an SD card or similar flash 
memory card, offering high capacity and portability. The camera 
system includes a dedicated controller for managing access to this 
media. 

2. Internal Storage: Some cameras might have a small amount of 
internal non-volatile memory for essential system files or a limited 
number of captures if no external card is present. 

○ Connectivity: Modern cameras offer various interfaces for data transfer and 
external control: 

1. USB: For high-speed data transfer to a computer, and often for 
charging. 

2. Wi-Fi/Bluetooth: For wireless image transfer to smartphones/cloud, 
remote control, and geotagging. 

3. HDMI/Video Out: For displaying images/video on external monitors. 
○ Power Management Unit: Given that most cameras are battery-powered 

and highly portable, efficient power management is crucial. This unit includes 
batteries, power regulation circuits (DC-DC converters, LDOs), and logic for 
dynamic voltage and frequency scaling to optimize power consumption 
across different operational modes (e.g., capture, sleep, playback). 

● 10.1.2 Image Sensor Technologies: CMOS vs. CCD - A Detailed Comparison 
The image sensor is the core component converting light into electrical signals. 
Understanding the two predominant technologies is key to appreciating camera 
design choices. 

○ Charge-Coupled Device (CCD) Sensors: 
1. Fundamental Principle: In a CCD sensor, each pixel is a photodiode 

that converts incident photons into an electrical charge packet. After 
exposure, these charge packets are not read out directly from each 
pixel. Instead, they are transferred sequentially from one pixel to the 
next, like a chain, down a "bucket brigade" shift register. This charge 
finally reaches a single, highly sensitive output amplifier, where it is 
converted into a voltage signal. This voltage is then digitized by an 
external (or on-chip, but separate) ADC. 

2. Strengths: 
■ High Image Quality and Low Noise (Historically): Due to the 

unified, highly optimized output amplifier, CCDs traditionally 
achieved lower noise and better light sensitivity, especially in 
low-light conditions. The charge transfer process itself 
minimizes the impact of individual pixel variations. 

■ Global Shutter Capability: Many CCDs inherently support a 
global shutter mode, meaning all pixels are exposed and read 
out simultaneously. This eliminates rolling shutter artifacts 
(skewing, wobble) often seen with fast-moving objects in video 
or rapid panning. This makes them ideal for professional 



photography, scientific imaging, and machine vision 
applications requiring precise capture of motion. 

■ High Fill Factor: CCDs often have a higher "fill factor," 
meaning a larger percentage of the pixel area is light-sensitive, 
contributing to better light gathering. 

3. Weaknesses: 
■ Slower Readout Speed: The serial nature of charge transfer 

limits the readout speed, especially for high-resolution sensors. 
High frame rates become challenging. 

■ Higher Power Consumption: The charge transfer and 
external ADC circuitry tend to consume more power. 

■ Complex and Costly Manufacturing: The fabrication process 
is more complex, leading to higher manufacturing costs and 
larger chip sizes. 

■ Susceptible to Smear: Bright light sources can cause vertical 
"smear" due to charge spilling during transfer if not handled 
carefully. 

4. Typical Use Cases: Still prevalent in high-end scientific cameras, 
professional broadcast cameras, astronomical telescopes, and some 
industrial inspection systems where uncompromised image quality 
and global shutter are paramount, and cost/power are secondary. 

○ Complementary Metal-Oxide-Semiconductor (CMOS) Sensors: 
1. Fundamental Principle: In a CMOS sensor, each pixel integrates its 

own photodiode, amplifier, and active read-out circuitry. After 
exposure, the charge generated by the photodiode is converted into a 
voltage at the pixel itself. Each pixel (or row of pixels) can be 
addressed individually, and its voltage signal is then digitized by an 
on-chip ADC (often one ADC per column or group of columns). This 
allows for highly parallel readout. 

2. Strengths: 
■ Lower Power Consumption: The active amplifiers at each 

pixel can be designed for lower power, and the parallel readout 
reduces the need for high-speed, power-hungry external 
components. 

■ Faster Readout Speed and Higher Frame Rates: The 
parallel architecture allows for significantly faster readout, 
enabling high-speed video capture and burst photography. 

■ Higher Integration Capability (System-on-Chip): CMOS 
technology allows for easy integration of additional 
functionalities (like ADCs, image signal processing logic, 
memory controllers, even entire processors) directly onto the 
sensor chip. This reduces system complexity, component 
count, board space, and overall cost. 

■ Lower Manufacturing Cost: CMOS sensors are 
manufactured using standard semiconductor processes, which 
are cheaper and more mature. 

■ Reduced Smear: Less susceptible to vertical smear compared 
to CCDs. 



3. Weaknesses: 
■ Rolling Shutter (Common): Most CMOS sensors employ a 

rolling shutter, where different rows are exposed and read out 
at slightly different times. This can lead to "jello effect" or 
skewing artifacts when capturing fast-moving objects or during 
rapid camera movement. While global shutter CMOS sensors 
exist, they are more complex and expensive. 

■ Fixed Pattern Noise: Historically, individual pixel amplifiers 
could introduce more "fixed pattern noise" due to variations in 
their characteristics, though significant advancements have 
largely mitigated this. 

4. Typical Use Cases: Dominant in nearly all consumer digital cameras, 
smartphones, webcams, security cameras, drones, automotive vision 
systems, and virtually all modern embedded vision applications due to 
their superior balance of cost, power efficiency, speed, and integration 
capabilities, with rapidly improving image quality that often rivals or 
surpasses CCDs for many uses. 

● 10.1.3 Image Signal Processing (ISP) Pipeline: Fundamental Steps and 
Computational Challenges 
The raw image data captured by the sensor is not directly usable. It's often 
monochromatic (for color sensors with Bayer filters) and contains noise and 
imperfections. The ISP pipeline is a sophisticated sequence of digital processing 
steps crucial for transforming this raw data into a visually pleasing and accurate final 
image. This pipeline is a prime candidate for hardware-software partitioning. 

○ Key Stages and Their Purpose: 
1. Defect Pixel Correction (DPC): 

■ Purpose: To identify and correct "hot" (always on) or "dead" 
(always off) pixels on the sensor that appear as fixed bright or 
dark spots. 

■ Method: Typically uses a predefined map of defective pixels or 
identifies them statistically. Replaces the defective pixel's value 
by interpolating from its healthy neighboring pixels. 

■ Computational Demand: Relatively low, primarily lookup table 
and simple interpolation. 

2. Black Level Compensation (BLC): 
■ Purpose: To compensate for the inherent dark current noise 

and offset present in the sensor's analog output, which causes 
"black" areas to appear slightly grey. 

■ Method: Subtracts a learned or dynamically measured black 
level value from each pixel's raw data. 

■ Computational Demand: Low, simple subtraction per pixel. 
3. Lens Shading Correction (LSC) / Vignetting Correction: 

■ Purpose: To compensate for the phenomenon where the 
image corners appear darker than the center, primarily due to 
the lens's optical characteristics. 

■ Method: Applies a gain factor to pixels that increases from the 
center to the edges, based on pre-calibrated lens 
characteristics. 



■ Computational Demand: Moderate, involves multiplication 
per pixel based on its position. 

4. Bayer Demosaicing (Debayering): 
■ Purpose: Most color sensors use a Bayer filter array, where 

each pixel captures only one color (Red, Green, or Blue) in a 
specific pattern. Demosaicing is the process of interpolating 
the two missing color components for each pixel to reconstruct 
a full-color (RGB) image. 

■ Method: Employs complex interpolation algorithms (e.g., 
bilinear, bicubic, adaptive, edge-aware) that estimate the 
missing color values based on surrounding pixels of all colors. 
This is the first step where "color" is truly formed. 

■ Computational Demand: Very High. This is one of the most 
computationally intensive steps in the ISP pipeline, requiring 
significant processing power to perform accurate interpolation 
across millions of pixels in real-time. Often implemented in 
dedicated hardware. 

5. White Balance (AWB - Automatic White Balance): 
■ Purpose: To ensure that white objects in the scene appear 

white in the captured image, regardless of the color 
temperature of the illumination source (e.g., warm indoor light 
vs. cool outdoor light). 

■ Method: Analyzes the color distribution in the image (or 
specific areas) to estimate the scene illuminant and then 
applies global gain adjustments to the Red, Green, and Blue 
color channels to neutralize color casts. 

■ Computational Demand: Moderate to high, depending on 
algorithm complexity. Often has both hardware (initial statistical 
gathering) and software (complex algorithm decision) 
components. 

6. Color Space Conversion (CSC): 
■ Purpose: To convert the RGB image data (suitable for primary 

display) into other color spaces more suitable for storage or 
further processing, such as YCbCr (luminance, blue 
chrominance, red chrominance). YCbCr is widely used for 
video compression (like JPEG, MPEG) because human vision 
is more sensitive to luminance than chrominance, allowing for 
chrominance downsampling. 

■ Method: Applies a linear transformation matrix to convert RGB 
values to YCbCr or other target color spaces. 

■ Computational Demand: Moderate, matrix multiplications per 
pixel. 

7. Gamma Correction: 
■ Purpose: To adjust the tonal response of the image to match 

the non-linear way human eyes perceive brightness and to 
compensate for the non-linear response of display devices. It 
makes the image appear more natural. 



■ Method: Applies a non-linear power function to the pixel 
intensity values (gamma curve). 

■ Computational Demand: Moderate, often implemented using 
lookup tables for speed. 

8. Noise Reduction (NR): 
■ Purpose: To reduce various types of noise (e.g., random noise 

from sensor, shot noise, fixed pattern noise) introduced during 
image acquisition, especially in low-light conditions or at high 
ISO settings. 

■ Method: Applies spatial filters (e.g., bilateral filter, non-local 
means) to smooth out noise while preserving edges, and 
sometimes temporal filters (using multiple frames). 

■ Computational Demand: High. Sophisticated noise reduction 
algorithms are very computationally intensive, involving 
complex calculations across pixel neighborhoods. Often 
requires dedicated hardware acceleration. 

9. Sharpening / Edge Enhancement: 
■ Purpose: To enhance the perceived sharpness and detail of 

edges in the image, often to counteract blur introduced during 
acquisition or processing. 

■ Method: Applies convolution kernels (e.g., unsharp mask) that 
emphasize transitions in brightness. 

■ Computational Demand: Moderate to high, involves 
convolution operations. 

10. Automatic Exposure Control (AEC): 
■ Purpose: To determine the optimal exposure settings (sensor 

gain, shutter speed, aperture) to achieve a well-exposed image 
(neither too dark nor too bright). 

■ Method: Analyzes image statistics (e.g., histogram, average 
brightness) and adjusts control parameters dynamically. This is 
a feedback loop. 

■ Computational Demand: Moderate, involves statistical 
analysis and control logic. Often a blend of hardware (metrics 
calculation) and software (decision engine). 

11. Image Compression (e.g., JPEG Encoder): 
■ Purpose: To reduce the file size of the processed image for 

efficient storage and transmission without significant loss of 
visual quality. 

■ Method: Utilizes complex algorithms like Discrete Cosine 
Transform (DCT), quantization, and Huffman coding. 

■ Computational Demand: Very High. This is typically the final 
major processing step before storage and requires substantial 
processing power for real-time operation, especially for 
high-resolution images and video streams. Almost always 
implemented in dedicated hardware accelerators. 



 
Module 10.2: Hardware-Software Co-design: The Synergistic Approach 
This section deeply explores the philosophy behind hardware-software co-design, 
highlighting its necessity in optimizing complex embedded systems. 

● 10.2.1 The Essence and Imperative of Hardware-Software Co-design 
○ Definition: Hardware-Software Co-design is a paradigm shift from traditional 

sequential design flows. It is a concurrent and iterative design methodology 
where the hardware architecture and software functionality are considered 
and developed in parallel, from the earliest stages of conceptualization. The 
fundamental principle is that neither hardware nor software can be optimized 
in isolation without affecting the other; they are two sides of the same coin, 
and their symbiotic relationship must be exploited for optimal system design. 
The ultimate goal is to achieve the best possible overall system performance, 
cost, power efficiency, flexibility, and time-to-market. 

○ Critique of Traditional Sequential Design: In a "waterfall" or sequential 
design approach, the hardware platform is first fully designed, fabricated, and 
validated. Only then does the software development begin, aiming to run on 
this fixed hardware. 

■ Disadvantages of Sequential Design: 
■ Sub-optimal Solutions: The hardware might be 

over-provisioned (too powerful/expensive) for some tasks or, 
more commonly, under-provisioned, leading to software 
struggling to meet performance or real-time deadlines. 

■ Late Bug Discovery: Hardware-related issues (e.g., 
performance bottlenecks, insufficient I/O bandwidth) 
discovered late in the software development phase are 
extremely costly and time-consuming to rectify, often requiring 
hardware redesign. 

■ Limited Flexibility: Software developers are constrained by 
the fixed hardware architecture, limiting their ability to 
implement desired features or optimizations. 

■ Extended Time-to-Market: The sequential nature inherently 
prolongs the overall development cycle. 

○ Why Co-design is Imperative for Modern Embedded Systems: 
■ Tight Constraints: Embedded systems operate under severe 

constraints (power budget, cost, physical size, real-time deadlines). 
These cannot be met by optimizing hardware or software alone; a 
holistic approach is mandatory. 

■ Increasing Complexity: Modern embedded systems (like digital 
cameras, autonomous vehicles, IoT devices) feature multi-core 
processors, specialized accelerators, complex communication 
protocols, and sophisticated algorithms. Managing this complexity 
demands concurrent design. 

■ Emergence of Reconfigurable Hardware: The widespread use of 
FPGAs (Field-Programmable Gate Arrays) blurs the line between 
hardware and software, allowing for dynamic hardware 



reconfigurations. Co-design methodologies are essential to leverage 
this flexibility effectively. 

■ Need for Early Validation: Identifying critical design flaws, 
performance bottlenecks, or resource shortfalls early in the design 
cycle (when costs of change are minimal) is a major driver for 
co-design. 

● 10.2.2 Key Principles Guiding Effective Co-design 
Effective hardware-software co-design is built upon several core principles: 

○ Concurrent Development and Iteration: Instead of a sequential hand-off, 
hardware and software development proceeds in parallel. Teams 
communicate continuously, providing feedback on each other's progress and 
constraints. This iterative cycle allows for rapid adjustments and convergence 
towards an optimal solution. Simulations and prototypes are used extensively 
to validate intermediate designs. 

○ System-Level Modelling and Abstraction: The design process begins with 
high-level, abstract models of the entire system (as discussed in Week 8). 
These models describe the overall functionality, architecture, and behavior 
without committing to specific hardware or software implementations initially. 
This allows designers to understand critical interactions, identify performance 
bottlenecks, and explore design alternatives at a conceptual level before 
investing significant resources in detailed implementation. Examples include 
SystemC, MATLAB/Simulink models. 

○ Early Partitioning and Allocation: The most critical decision in co-design is 
where to draw the boundary between hardware and software. This 
"partitioning" happens early, often based on initial performance and cost 
estimates. Functions are allocated to hardware or software units. This early 
decision-making prevents costly reworks later. 

○ Interface Definition and Refinement: As partitioning proceeds, the 
interfaces between the hardware and software components must be precisely 
defined (e.g., memory maps, register definitions, communication protocols, 
interrupt lines). These interfaces are then continuously refined and validated 
to ensure seamless interaction. 

○ Verification and Co-simulation: Given the concurrent nature, continuous 
verification is vital. This involves: 

■ Co-simulation: Simulating both the hardware model and software 
code running on that model simultaneously to verify their interaction 
and the overall system behavior. 

■ Hardware-in-the-Loop (HIL) Simulation: Connecting actual 
hardware components to software simulations to test real-time 
interactions. 

■ Emulation/Prototyping: Using FPGAs or specialized emulation 
platforms to create a rapidly reconfigurable hardware prototype on 
which the real software can run, allowing for early and realistic testing. 

○ Quantitative Metrics and Analysis: Decisions are driven by quantitative 
metrics. Designers analyze estimated performance (throughput, latency), 
power consumption, area (gate count for hardware, memory footprint for 
software), and cost for different partitioning options to make informed choices. 
Tools for estimation and analysis are crucial. 



 
Module 10.3: Hardware-Software Partitioning: The Allocation Challenge 
This section delves into the practical considerations and strategies involved in making the 
crucial decision of where to implement specific functionalities. 

● 10.3.1 Definition, Objectives, and Constraints of Partitioning 
○ Definition: Hardware-Software Partitioning is the process within co-design 

where each logical function or sub-function of the embedded system is 
assigned to either a custom hardware component (e.g., an ASIC, an FPGA IP 
block, a specialized peripheral) or to be executed as software instructions on 
a programmable processor (e.g., CPU, DSP). It's the critical decision point 
that shapes the final system architecture. 

○ Primary Objectives of Partitioning: The core drivers behind partitioning 
decisions are: 

■ Meeting Performance Requirements: This is often the paramount 
objective in high-performance embedded systems. Functions requiring 
high throughput, low latency, significant parallelism, or precise timing 
often dictate hardware implementation. 

■ Minimizing Total System Cost: This involves a balance between 
Non-Recurring Engineering (NRE) costs (design, verification, mask 
sets for ASICs) and Recurring Costs (per-unit manufacturing cost). 
Hardware ASICs have high NRE but low per-unit cost for high volume. 
FPGAs have lower NRE but higher per-unit costs. Software has lower 
NRE but requires a processor that adds to per-unit cost. 

■ Optimizing Power Consumption: For battery-powered devices, 
power efficiency is critical. Dedicated hardware can perform specific 
tasks with significantly less power than a general-purpose processor 
running software for the same task. However, general-purpose 
processors offer sophisticated power management features at a 
system level. 

■ Ensuring Flexibility and Updatability: Software provides 
unparalleled flexibility. Functionalities implemented in software can be 
easily modified, debugged, and updated even after the product is 
deployed (e.g., via firmware over-the-air updates). Hardware, once 
fabricated, is largely immutable. 

■ Reducing Time-to-Market: Leveraging existing hardware IP blocks, 
standard processors, and well-developed software libraries can 
significantly accelerate the development schedule compared to 
designing complex custom hardware from scratch. 

○ Key Constraints Guiding Decisions: 
■ Real-time Deadlines: Strict time limits for task completion. 
■ Computational Intensity: Amount of processing power required. 
■ Data Throughput: Volume of data to be processed per unit time. 
■ Power Budget: Maximum allowable power consumption. 
■ Memory Footprint: Amount of RAM/ROM required. 
■ Chip Area/Board Space: Physical size limitations. 
■ Cost Targets: Total cost of materials (BOM) and development. 



■ Safety/Security Criticality: Functions requiring certified correctness 
or strong security might favor formal methods in hardware. 

● 10.3.2 Influencing Factors and Design Trade-offs in Partitioning 
Each factor carries its own weight and implies specific implementation choices: 

○ Performance and Speed Requirements: 
■ Hardware Advantage: Custom hardware (ASICs, dedicated 

accelerators in FPGAs) excels at parallel execution, pipelining, and 
bit-level manipulations. It can achieve much higher throughput and 
lower latency for specific, fixed functions. For example, a dedicated 
hardware multiplier can perform a multiplication in a single clock cycle, 
while a software routine might take many cycles. 

■ Software Limitation: Limited by the processor's clock speed, 
instruction set, and sequential execution model. While modern CPUs 
are fast, they introduce overhead for context switching, memory 
access, and general-purpose instruction decoding that can be 
bottlenecks for highly repetitive, time-critical tasks. 

○ Throughput and Concurrency: 
■ Hardware Advantage: Dedicated hardware can process multiple data 

streams or perform numerous independent operations truly in parallel. 
This is critical for applications like video processing where many pixels 
or data blocks need simultaneous treatment. 

■ Software Limitation: Single-core processors execute instructions 
sequentially. Multi-core processors offer parallelism but incur overhead 
for task scheduling, synchronization, and inter-processor 
communication. 

○ Power Consumption: 
■ Hardware Advantage: For a specific, frequently executed task (e.g., 

a specific filter in an ISP), a custom hardware block designed to 
perform only that function can be significantly more power-efficient 
than running complex software on a general-purpose CPU. This is 
because hardware uses less power per operation and can often 
process data in a highly optimized, pipelined fashion. 

■ Software Limitation: General-purpose CPUs consume power even 
when idle. Executing complex algorithms in software involves fetching 
instructions, decoding, executing, and accessing memory, all of which 
consume energy. 

○ Flexibility and Adaptability: 
■ Hardware Limitation: Once an ASIC is fabricated, its functionality is 

fixed. Any design change requires a costly and time-consuming 
re-fabrication. FPGAs offer reconfigurability but still require 
recompilation of the hardware description language (HDL) and 
redistribution of the bitstream. 

■ Software Advantage: Highly adaptable. Functionalities can be easily 
modified, debugged, and updated (via firmware updates) even after 
deployment, extending product life and enabling new features. This is 
a major advantage for evolving standards or addressing bugs 
post-release. 

○ Cost (Development and Production): 



■ Hardware (ASIC): High Non-Recurring Engineering (NRE) costs, 
which include design, verification, mask sets, and initial fabrication 
runs. These can run into millions of dollars. However, for very 
high-volume production (millions of units), the per-unit cost can 
become extremely low, making ASICs highly cost-effective in the long 
run. 

■ Hardware (FPGA): Lower NRE costs than ASICs (no mask sets). 
However, the per-unit cost of an FPGA is generally higher than an 
ASIC for the same functionality, making them suitable for 
lower-to-medium volume production or for prototyping. 

■ Software: Generally lower NRE compared to complex hardware 
design. However, it requires a processor to run on, which adds to the 
per-unit Bill of Materials (BOM) cost. There are also ongoing software 
development, testing, and maintenance costs. 

○ Development Time and Effort: 
■ Hardware: Longer design cycles, requiring specialized expertise in 

Hardware Description Languages (HDLs like VHDL/Verilog), 
synthesis, place-and-route, and physical verification. Debugging 
hardware can also be more challenging. 

■ Software: Generally shorter development cycles, leveraging mature 
programming languages (C/C++), widely available IDEs, debuggers, 
and large communities of skilled engineers. 

○ Reliability and Verification: 
■ Hardware: Once designed and verified, custom hardware offers highly 

deterministic and predictable behavior, making it ideal for 
safety-critical functions where formal verification can be applied. Bugs 
in hardware are extremely difficult to fix post-fabrication. 

■ Software: More prone to subtle bugs (e.g., race conditions, memory 
leaks) due to complexity and interaction with operating systems. While 
extensive testing is done, achieving the same level of formal proof as 
some hardware designs can be challenging. 

○ Intellectual Property (IP) Availability: The existence of pre-designed, 
verified hardware IP blocks (e.g., an ARM Cortex-M core, a standard JPEG 
encoder block, a MIPI D-PHY interface) or mature software libraries and 
RTOS kernels significantly influences partitioning. Reusing IP accelerates 
development and reduces risk. 

● 10.3.3 Granularity of Partitioning: Levels of Detail in Allocation 
Partitioning can occur at various levels of functional decomposition, impacting the 
complexity of the design and the potential for optimization. 

○ Coarse-Grained Partitioning: 
■ Concept: At this level, major functional blocks or entire subsystems 

are assigned to either hardware or software. The focus is on the 
high-level architecture. 

■ Example: "The entire Image Signal Processing pipeline will be 
handled by a dedicated hardware ISP accelerator," "The User 
Interface and camera mode control will be entirely software-driven on 
the main CPU." 

■ Advantages: Simpler to manage, faster initial design decisions. 



■ Disadvantages: May miss opportunities for fine-grained optimization 
within large blocks, leading to sub-optimal resource utilization or 
performance. 

○ Fine-Grained Partitioning: 
■ Concept: This involves dissecting complex algorithms or functions 

into their smallest constituent operations (e.g., loops, arithmetic 
operations, specific bit manipulations) and deciding, at this very 
detailed level, which parts are best suited for hardware and which for 
software. 

■ Example: Within the Noise Reduction algorithm, a specific 
convolution filter might be implemented as a custom hardware module 
for speed, while the control logic for applying different noise reduction 
levels might remain in software. Or, a specific loop in the Demosaicing 
algorithm that consumes 80% of computation time might be offloaded 
to a small hardware accelerator. 

■ Advantages: Achieves maximum optimization in terms of 
performance, power, and area. Can extract significant speed-ups. 

■ Disadvantages: Significantly increases design complexity, requires 
deep understanding of the algorithm and hardware architecture, and 
prolongs development and verification time. Tools for automated 
fine-grained partitioning are still evolving but High-Level Synthesis 
(HLS) tools assist in this. 

 
Module 10.4: Case Study: Hardware-Software Partitioning in a Digital 
Camera System 
This section applies the abstract principles of partitioning to the concrete example of a digital 
camera, providing specific insights into typical design choices. 

● 10.4.1 Functional Blocks of a Digital Camera Revisited for Partitioning 
To analyze partitioning, we break down the camera into its key processing stages, 
considering their computational demands, data rates, and flexibility requirements. 

○ Image Sensor Interface & Raw Data Stream 
○ Initial ISP stages (Defect Correction, Black Level, Lens Shading, 

Demosaicing, basic WB) 
○ Advanced ISP stages (Noise Reduction, Sharpening, Gamma, Color Space 

Conversion) 
○ JPEG Compression/Decompression 
○ Automatic Exposure Control (AEC) & Automatic White Balance (AWB) 

Algorithms 
○ User Interface (UI) Logic & Display Rendering 
○ System Control, Mode Management, and Power Management 
○ File System & Storage Management 
○ Connectivity (USB, Wi-Fi stack) 

● 10.4.2 Typical Partitioning Decisions in a Digital Camera System: A Pragmatic 
Approach 



The design of a typical digital camera exemplifies how hardware and software 
complement each other to achieve system goals. 

○ I. Functions Primarily Implemented in Dedicated Hardware (for Performance 
and Efficiency): 
These functions are characterized by high data throughput, repetitive 
pixel-level operations, strict real-time deadlines, and often require highly 
parallel execution. 

■ Image Sensor Interface and Raw Data Capture: The sheer volume 
and speed of data streaming from modern image sensors (e.g., 4K 
video at 60fps) necessitate dedicated hardware. This includes 
high-speed serial interfaces (like MIPI CSI-2 physical layer and 
protocol processing) and direct memory access (DMA) engines that 
can continuously transfer raw pixel data into memory buffers without 
constant CPU intervention. Any software involvement here would 
create a severe bottleneck. 

■ Core Image Signal Processing (ISP) Pipeline (Early Stages): The 
most computationally intensive and pixel-parallel operations of the ISP 
are almost universally implemented in dedicated hardware 
accelerators (often called an "ISP pipeline" or "ISP block" within a 
System-on-Chip). This includes: 

■ Bayer Demosaicing: As highlighted, this algorithm processes 
every pixel to reconstruct color information. It's a prime 
candidate for hardware acceleration due to its high 
computational load at video rates. 

■ Defect Pixel Correction, Black Level Compensation, Lens 
Shading Correction: These are computationally simpler but 
still performed on every pixel. Hardware implementation 
ensures they are applied efficiently and at line rate. 

■ Initial White Balance & Color Correction Matrix: Basic color 
adjustments often done in hardware, with more sophisticated 
adaptive algorithms handled in software. 

■ Gamma Correction, Color Space Conversion: These are 
lookup table or matrix multiplication operations performed on 
every pixel, making hardware implementation efficient. 

■ Basic Noise Reduction and Sharpening: While advanced 
algorithms can be in software, fundamental noise reduction 
(e.g., spatial averaging, simple median filters) and sharpening 
(e.g., basic convolution filters) are often hardwired for real-time 
performance. 

■ Image Compression (e.g., JPEG Encoder/Decoder): Compressing 
and decompressing images (especially high-resolution stills or video 
streams) involves complex mathematical transformations (like DCT, 
quantization, Huffman coding). Performing these entirely in software 
would consume a significant portion of a general-purpose processor's 
cycles and prevent real-time performance. Thus, dedicated hardware 
JPEG encoders and decoders are standard components in camera 
ISPs or integrated within the SoC. 



■ Memory Controllers and DMA (Direct Memory Access) Engines: 
Critical hardware blocks that efficiently manage data transfers 
between memory (RAM, Flash), the image sensor, the ISP, and other 
peripherals. They offload data movement tasks from the main CPU, 
allowing it to focus on control and higher-level processing. 

○ II. Functions Primarily Implemented in Software (for Flexibility and Control): 
These functions typically involve more complex decision-making, adaptive 
algorithms, less strict real-time deadlines, and benefit from easy modifiability. 

■ Overall System Control and Mode Management: The main 
embedded processor (microcontroller or CPU) runs the core operating 
system (often an RTOS) and application software. This software 
orchestrates the entire camera: managing power states (sleep, awake, 
standby), switching between photo, video, and playback modes, 
handling system initialization, and responding to events. This 
demands flexibility for firmware updates and new features. 

■ User Interface (UI) Logic and Display Rendering: All aspects of the 
user experience – processing button presses, touch screen gestures, 
navigating menus, rendering graphical overlays on the LCD display, 
and displaying captured images – are handled by software. The UI 
needs to be highly flexible for customization, localization, and feature 
additions. 

■ Advanced Automatic Exposure Control (AEC) and Automatic 
White Balance (AWB) Algorithms: While hardware might provide 
basic metrics (e.g., histogram, average luminance), the sophisticated 
decision-making algorithms that analyze scene content, detect faces, 
apply intelligent exposure metering (e.g., matrix metering), or adapt 
white balance to mixed lighting conditions are typically implemented in 
software. This allows camera manufacturers to differentiate their 
products through proprietary, constantly evolving algorithms. 

■ File System and Storage Management: Managing the storage of 
images and videos on internal memory or external SD cards (e.g., 
FAT32, exFAT file systems), including creating, reading, writing, and 
deleting files, is a complex task best handled by robust software 
libraries. 

■ Communication Stacks (USB, Wi-Fi, Bluetooth): Implementing 
standard communication protocols involves multiple layers of 
complexity (e.g., TCP/IP stack for Wi-Fi, USB device classes). These 
are almost universally managed by software running on the main 
processor, often leveraging network interface hardware peripherals. 

■ Advanced Image Post-processing and Computational 
Photography: Features like High Dynamic Range (HDR) merging, 
panorama stitching, focus stacking, computational bokeh, and 
advanced noise reduction algorithms that operate on multiple frames 
or require significant computational flexibility are often implemented 
primarily in software. While they might use hardware acceleration for 
basic operations, the overarching logic and complex fusion are 
software-driven, allowing for continuous improvement via firmware 
updates. 



■ Firmware Updates and Diagnostics: The mechanisms for updating 
the camera's firmware and performing self-diagnostics are inherently 
software functionalities. 

● 10.4.3 Interfacing and Communication Between Hardware and Software in a Camera 
System 
Seamless interaction between the partitioned hardware and software components is 
critical for system functionality. 

○ Memory-Mapped Registers (MMR): This is the primary mechanism for 
software to control hardware. Dedicated hardware blocks (like the ISP, sensor 
controller, JPEG encoder) expose their control and status signals as 
memory-mapped registers. Software writes values to these memory 
addresses to configure hardware parameters (e.g., exposure time, white 
balance gains, ISP pipeline settings) and reads from them to check hardware 
status or retrieve processing results. 

○ Interrupts: Hardware blocks use interrupts to signal the software (CPU) that 
an event has occurred or a task is complete. Examples include: "new frame 
ready" interrupt from the sensor interface, "ISP processing complete" 
interrupt, "JPEG compression finished" interrupt, or "SD card 
inserted/removed" interrupt. Interrupts allow the CPU to remain in a 
low-power state or perform other tasks until hardware requires its attention, 
thus improving system responsiveness and efficiency. 

○ Direct Memory Access (DMA): For high-bandwidth data transfers, DMA 
controllers are essential. Instead of the CPU repeatedly copying data from 
one peripheral to another, the software configures the DMA controller once 
(source, destination, transfer size). The DMA hardware then handles the bulk 
data movement directly between peripherals and memory (or memory to 
memory) without consuming CPU cycles. This is vital for moving large image 
buffers efficiently through the ISP pipeline and to/from storage. 

○ Shared Memory Buffers: Large blocks of RAM are designated as shared 
buffers where hardware (e.g., the image sensor interface or ISP output) writes 
data, and software (e.g., the JPEG compression routine or display driver) 
reads data. Proper synchronization mechanisms (semaphores, mutexes – 
from Week 6) are used in software to prevent data corruption when multiple 
hardware/software entities access these shared buffers. 

○ Hardware Abstraction Layer (HAL): In software, a HAL provides a 
standardized set of API calls that allow the application layer to interact with 
hardware peripherals without needing to know the low-level register details. 
This simplifies software development, improves portability, and cleanly 
separates hardware-dependent code from the application logic. For a camera, 
the HAL would abstract away the complexities of configuring the image 
sensor, ISP, and memory controllers. 

 
Module 10.5: Design Trade-offs: Optimizing Embedded System 
Architecture 



This concluding section emphasizes that embedded system design, particularly 
hardware-software partitioning, is a constant balancing act driven by project goals and 
constraints. 

● 10.5.1 The Interplay and Conflict of Performance, Cost, Power, and Flexibility 
These four primary design objectives are often in direct conflict, forming the core of 
the design trade-off space. Optimizing for one typically necessitates compromises in 
others. 

○ Performance (Speed, Throughput, Latency): 
■ Push Towards Hardware: To achieve maximum performance (e.g., 

high frame rates, low processing latency for video), more 
functionalities are pushed into dedicated hardware accelerators. This 
parallelism and optimized data path inherently offer higher speeds 
than sequential software execution. 

■ Trade-off: This invariably increases initial design cost (NRE for 
ASICs), raises per-unit cost (for FPGAs or complex ASICs), 
consumes more power for the dedicated silicon (though more 
efficiently per operation), and drastically reduces flexibility for 
future modifications or feature updates. 

○ Cost (Development and Bill of Materials - BOM): 
■ Push Towards Software: To minimize development cost and often 

per-unit BOM (especially for low-to-medium volume), designers aim to 
implement as much functionality as possible in software on a less 
expensive, general-purpose processor or microcontroller. This 
leverages standard development tools and widely available skills. 

■ Push Towards ASIC Hardware (High Volume): For extremely 
high-volume products (millions of units), the very high NRE of an ASIC 
is amortized over many units, leading to the lowest possible per-unit 
cost. 

■ Trade-off: Maximizing software often compromises real-time 
performance and power efficiency. For ASICs, the high NRE 
increases financial risk and reduces flexibility. 

○ Power Consumption: 
■ Push Towards Dedicated Hardware: For energy-critical applications 

(e.g., battery-powered cameras), computationally intensive and 
repetitive tasks are moved to dedicated hardware blocks. These 
blocks are designed to be highly efficient for their specific task, 
executing operations with fewer clock cycles and often at lower 
voltages/frequencies than a general-purpose processor. 

■ Software Power Management: Software can manage system-wide 
power states (e.g., sleep modes, clock gating, dynamic voltage and 
frequency scaling – DVFS) of the processor and peripherals. 

■ Trade-off: Dedicated low-power hardware increases design 
complexity, NRE, and reduces flexibility. Over-reliance on software 
for power management alone might not meet aggressive power 
targets for high-performance tasks. 

○ Flexibility (and Time-to-Market): 



■ Push Towards Software: Software offers the highest degree of 
flexibility. Functionality can be changed, debugged, and updated even 
after the product is deployed through firmware updates. This 
significantly reduces the risk of design flaws and allows for continuous 
improvement and adaptation to evolving market demands. It also 
typically enables faster initial time-to-market due to shorter software 
development cycles. 

■ Push Towards FPGA Hardware: FPGAs offer a good balance of 
hardware acceleration and post-fabrication flexibility 
(reprogrammability) compared to ASICs. 

■ Trade-off: Software's flexibility often comes at the expense of 
performance and power efficiency. FPGAs are more expensive 
per unit than ASICs for high volume. 

● 10.5.2 The Iterative Nature of Trade-off Analysis in Design 
Finding the optimal partitioning is rarely a one-shot event. It's a continuous, iterative 
process that refines decisions as the design matures and more accurate data 
becomes available. 

○ Requirements Elicitation and Analysis (Initial Phase): Begin by thoroughly 
understanding all functional and, crucially, non-functional requirements 
(performance deadlines, power budget, cost targets, flexibility needs). 
Categorize requirements by criticality. 

○ High-Level System Modelling and Exploration: Create abstract models 
(e.g., in SystemC, MATLAB/Simulink) to simulate the overall system behavior. 
At this stage, explore various coarse-grained partitioning alternatives. Analyze 
which functions are bottlenecks, which are highly parallelizable, and which 
are highly flexible. 

○ Initial Partitioning and Allocation: Based on the high-level analysis and 
initial estimates for hardware performance/cost versus software 
performance/cost, make an initial, coarse-grained allocation of functions. 

○ Detailed Design and Estimation: For the chosen partition, start detailing the 
hardware blocks (e.g., RTL design for accelerators) and software modules. 
Use specialized tools (e.g., hardware synthesis tools for gate counts, power 
estimators; software profilers for execution time, memory usage) to get more 
accurate performance, power, and area estimates. 

○ Simulation and Co-simulation: Perform detailed simulations, including 
co-simulation of the hardware and software components interacting, to verify 
functionality and more accurately predict performance and power 
consumption under various workloads. 

○ Analysis and Refinement (The Core Iteration): Compare the simulation 
results and detailed estimates against the original requirements. 

■ If Performance Gap: If real-time deadlines are missed or throughput 
is too low, identify the bottlenecks. Is it a computationally heavy 
software routine? Can it be moved to a custom hardware accelerator? 
Can an existing hardware block be optimized or augmented? 

■ If Power Exceeds Budget: Analyze power consumption breakdowns. 
Is a software algorithm too inefficient? Can a hardware block be 
designed with lower power techniques? Can more aggressive power 
management states be utilized? 



■ If Cost Overruns: Re-evaluate if complex custom hardware is truly 
necessary for certain functions. Can a less expensive, slightly slower 
processor handle more in software? Can standard, off-the-shelf IP be 
used instead of custom design? 

■ If Flexibility is Compromised: If anticipated future updates are 
difficult, consider moving more functions to software or utilizing 
FPGAs. 

○ Prototyping and Real-World Validation: Build hardware prototypes (e.g., on 
FPGAs) and integrate actual software. Test the system in real-world 
scenarios. This often uncovers issues not seen in simulation. 

○ Feedback Loop: The results from prototyping and validation feed back into 
the design process, potentially leading to further partitioning adjustments, 
hardware revisions, or software optimizations. This iterative feedback loop 
continues until all requirements are met within the given constraints. 

● 10.5.3 Specific Examples of Trade-offs in Digital Camera Context 
The digital camera offers excellent illustrations of these design trade-offs in action. 

○ High-End DSLR vs. Compact Point-and-Shoot / Smartphone Camera: 
■ High-End DSLR: Often prioritizes raw image quality, dynamic range, 

and professional control. This leads to larger, more expensive sensors 
and sophisticated dedicated ISP hardware (potentially even separate, 
larger DSPs or FPGAs for advanced features). Cost and power 
consumption are secondary concerns compared to absolute 
performance. Flexibility often comes from interchangeable lenses and 
rich manual controls, rather than frequent firmware overhauls of the 
core image pipeline. 

■ Compact/Smartphone Camera: Prioritizes extreme compactness, 
low power consumption, and aggressive cost reduction, while still 
aiming for very good image quality in varied conditions. These rely 
heavily on highly integrated System-on-Chip (SoC) solutions, where 
the main CPU, highly optimized ISP, memory controllers, and various 
communication modules are all integrated onto a single, small, 
low-power chip. To compensate for smaller optics and sensors, 
software plays an increasingly significant role in advanced 
computational photography features (e.g., AI-based noise reduction, 
computational bokeh, multi-frame HDR) that leverage the 
general-purpose CPU and smaller, specialized accelerators within the 
SoC. The emphasis is on "good enough" performance for the average 
user, achieved smartly through hardware-software synergy, allowing 
for maximum flexibility via software updates. 

○ Real-time Video Processing vs. Still Image Post-processing: 
■ Real-time Video Processing (e.g., 4K 60fps): This demands 

extremely high, sustained throughput. The core ISP pipeline steps 
(debayering, noise reduction, color correction, and especially video 
encoding like H.264/HEVC) must be in dedicated hardware to meet 
strict frame rate deadlines and maintain low latency for live view or 
recording. Any delay or dropped frames would be unacceptable. 

■ Still Image Advanced Post-processing: After a high-resolution still 
image is captured and the basic ISP (mostly hardware-accelerated) is 



completed, more complex, computationally intensive, but 
non-real-time enhancements (e.g., panorama stitching from multiple 
photos, advanced multi-frame HDR merging, complex deep 
learning-based image enhancement, advanced artistic filters) can be 
performed primarily in software running on the main processor. The 
user typically tolerates a few seconds of processing time before the 
final image is saved or displayed. This strategy allows for immense 
flexibility, as new algorithms can be developed and pushed via 
firmware updates to improve image quality or add new features 
without hardware redesign. This also explains why many smartphone 
cameras rely heavily on software for their "computational 
photography" prowess. 

 

 


	Module 10: Digital Camera Design and Hardware-Software Partitioning - Crafting Specialized Embedded Systems 
	Module 10.1: The Architecture and Core Components of a Digital Camera System 
	Module 10.2: Hardware-Software Co-design: The Synergistic Approach 
	Module 10.3: Hardware-Software Partitioning: The Allocation Challenge 
	Module 10.4: Case Study: Hardware-Software Partitioning in a Digital Camera System 
	Module 10.5: Design Trade-offs: Optimizing Embedded System Architecture 

